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Abstract

We present a numerical algorithm for the solution of the Vlasov–Poisson system of equations, in the magnetized

case. The numerical integration is performed using the well-known ‘‘splitting’’ method in the electrostatic approxima-

tion, coupled with a finite difference upwind scheme; finally the algorithm provides second order accuracy in space and

time. The cylindrical geometry is used in the velocity space, in order to describe the rotation of the particles around the

direction of the external uniform magnetic field.

Using polar coordinates, the integration of the Vlasov equation is very simplified in the velocity space with respect to

the cartesian geometry, because the rotation in the velocity cartesian space corresponds to a translation along the

azimuthal angle in the cylindrical reference frame. The scheme is intrinsically symplectic and significatively simpler

to implement, with respect to a cartesian one. The numerical integration is shown in detail and several conservation

tests are presented, in order to control the numerical accuracy of the code and the time evolution of the entropy, strictly

related to the filamentation problem for a kinetic model, is discussed.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In collisionless approximation, the Vlasov equation describes the time evolution of the distribution func-

tion, in the six-dimensional phase space, under the effect of the self-consistent and external electromagnetic
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fields, solutions of the Maxwell equations. In this way, the Vlasov–Maxwell system provides a powerful

description of the plasma state, which depends on the details of the velocity distribution function. The inter-

est of such an approach resides principally in the possibility to study the fundamental hamiltonian aspects

underlying the nonlinear dynamics of collisionless plasma systems, taking into account particle effects (as

wave–particle interactions), which are ruled out from fluid description, but play a fundamental role in par-
ticle acceleration and wave absorption phenomena, especially in collisionless plasmas. The Vlasov equation

is a nonlinear partial derivative differential equation, whose analytical solution is available only in a few

simplified linear cases, but the nonlinear regime, including the most interesting physical phenomena, must

be investigated numerically.

In this context, particle in cell codes (PIC) [1] represent historically widely adopted approach to numer-

ical simulations of plasmas in the framework of the kinetic theory and in the past years they have been con-

sidered the most effective tool in the description of the plasma dynamics, above all because such an

approach allows to study a large panorama of physical aspects in the full dimensional case, with a relatively
small computational costs. On the other hand, even if nowadays the computational effort is directed to use

the modern massive parallel computers, in order to study numerically the solutions of the Vlasov–Maxwell

system in the fully nonlinear regime, the six-dimensional phase space description is still a very hard goal. In

spite of these considerations, a huge scenario of physical processes in plasma physics can be described in a

phase space of lower dimensions and here Vlasov codes are extremely useful, for example in one spatial and

one velocity coordinates phase space, one spatial and two velocity or in the four-dimensional description,

with a relatively good numerical resolution. Moreover, using Vlasov codes allows to cancel the statistical

noise which is intrinsic to PIC simulations.
The code presented in this paper solves numerically the Vlasov–Poisson system of equations in a three-

dimensional phase space, one-dimensional in the physical space (1D) and two-dimensional in the velocity

(2V). The numerical integration is based on the coupling of the splitting method, in electrostatic approxi-

mation [2], with a finite difference upwind scheme. The approach is similar to the ‘‘flux balance method’’

proposed by Fijalkow [3–5]. The algorithm is second order accurate in space and time. The peculiarity

of the algorithm we have built up consists in using the cylindrical geometry in the velocity space, as we will

discuss in detail in the next section. This geometry is particularly effective in describing the dynamics of

charged particles moving in a plane perpendicular to a uniform magnetic field, because it represents the
natural way to describe circular motions. Due to the fact that the rotation in the velocity cartesian space

corresponds to a translation along the azimuthal angle in a polar reference frame, the numerical integration

of the Vlasov equation, based on following the information flux, as required by the finite difference upwind

scheme, results very simplified in cylindrical geometry with respect to the cartesian case. Moreover, using

polar coordinates allows to obtain a numerical scheme intrinsically symplectic and simpler than a cartesian

one, from the point of view of the code implementation.

As we will discuss in the next sections, the typical invariants of the Vlasov equation are conserved in time

in a very satisfactory way, in the sense that the numerical fluctuations of these quantities, due to the dis-
cretization of the domain, are about two orders of magnitude smaller than the physical fluctuations, in a

typical run, indicating that the numerical dissipation does not affect significatively the numerical results.

In the present configuration, the code is suitable to describe the time evolution of electrostatic modes, prop-

agating strictly perpendicular to an external uniform magnetic field, as the well-known Bernstein waves.

The paper is organized as follows. In Section 2, the Vlasov equation in cylindrical geometry is discussed

and a short recall to the splitting method and to the integration of the hyperbolic equations is presented; a

significative comparison between the cylindrical scheme and the cartesian ones is discussed. Section 3 is

devoted to the numerical integration of the Vlasov equation in 1D � 2V phase space. In Section 4, we
analyze the scaling of the truncation error with the simulation parameters and several conservation tests

are discussed and compared with the theoretical predictions, to demonstrate that the numerical results

are reliable. In Section 5, the numerical study of the entropy conservation in the Vlasov model is presented,
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paying particular attention to the so-called filamentation problem. In Section 6, the propagation of linear

Bernstein modes is treated numerically, in order to show an example of numerical results in a physical con-

text, about a problem of general interest in plasma physics research. In Section 7, the main conclusions of

the paper are finally presented.
2. Basic equations

If one considers wavelengths k much smaller than the electron skin depth, i.e., 4p2c2=k2x2
pe ¼

k2c2=x2
pe � 1, in which xpe is the electron plasma frequency, the electrostatic mode is decoupled from

the electromagnetic one; under these assumptions, from the Vlasov–Maxwell set of equations one reduces

to the Vlasov–Poisson subsystem, which describes the electrostatic part of the spectrum. It is worth noting

that, when the wave number is expressed in units of the inverse of the Debye length kD, the condition for the
validity of the electrostatic approximation is always satisfied for nonrelativistic plasmas, for k. 1.

We limit our study at the three-dimensional phase space (1D � 2V phase space). Under these conditions,

the basic equations can be written in the following form:
of
ot

þr � ðvf Þ þ rv � ½ðEþ v� BÞf � ¼ of
ot

þ vx
of
ox

þ ðEx þ vyB0Þ
of
ovx

� vxB0

of
ovy

¼ 0; ð1Þ

oEx

ox
¼

Z
f dvx dvy � 1; ð2Þ
where f(x,vx,vy, t) is the electron distribution function; the ions are considered as a motionless background

of neutralizing positive charge, because they cannot take part in the high frequency plasma oscillations.

E(x, t) is the electric field and the magnetic field B0 is along the z-direction (only variations in the x-direction
are allowed in the physical space).

In the previous system, the time is normalized to the inverse of the electron plasma frequency xpe and the

velocity to the electron thermal velocity vth, and consequently, E to �mxpevth/q and B0 to �mxpec/q (c is the

speed of light). Finally, f is normalized to the equilibrium particle density n0.

In the velocity space, we rewrite the above Vlasov equation in polar coordinates (v^,u), using the expres-

sion for the divergence $v in cylindric geometry:
of
ot

þ vx
of
ox

� B0

of
ou

þ 1

v?

o

ov?
½v?Ev?ðuÞf � þ

1

v?

o

ou
½EuðuÞf � ¼ 0; ð3Þ

oEx

ox
¼ qðxÞ ¼

Z
fv? dv? du� 1; ð4Þ
where f = f(x,v^,u,t), v? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
and u = arctan(vy/vx). The electric field components, in cylindrical

geometry, are EuðuÞ ¼ �Ex sinu and EvðuÞ ¼ Ex cosu. In the physical space, we impose periodic boundary

conditions, so the Poisson equation is integrated using a standard fast Fourier transform routine.

2.1. Splitting method

The numerical integration of the previous system is based on the well-known splitting scheme, which

allows to split the evolution of the distribution function in the phase space into two steps, one in the phys-

ical space, the other in the velocity. In order to understand the concept underlying the splitting method, one
can imagine to move from a generic point a to a generic point b, in the phase space, not going straight on,

but taking a staircase way. So, from the Vlasov equation (3), we can split the evolution of the distribution

function in the following way:
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ofx
ot

þ vx
ofx
ox

¼ 0; ð5Þ

ofv
ot

� B0

ofv
ou

þ 1

v?

o

ov?
½v?Ev?ðuÞfv� þ

1

v?

o

ou
½EuðuÞfv� ¼ 0. ð6Þ
The solutions of Eqs. (5) and (6) can be written as follows:
fxðt þ DtÞ ¼ KxðDtÞfxðtÞ;
fvðt þ DtÞ ¼ KvðDtÞfvðtÞ;
where Kx and Kv will be called ‘‘translation’’ operators and whose explicit expression will be evaluated in

the next section.

The splitting method provides a solution of Eq. (3), split into (5) and (6), in the following form [6]:
f ðnDtÞ ¼ ½KxðDt=2ÞKvðDtÞKxðDt=2Þ�nf ð0Þ ¼ KxðDt=2ÞKvðDtÞ½KxðDtÞKvðDtÞ�n�1KxðDt=2Þf ð0Þ þ oðDt3Þ

correct at second order in time, as discussed in [2].

The formula above allows to highlight the interest of the cylindrical approach with respect to the carte-
sian one. In fact, the main difference between cylindrical and cartesian scheme, in the integration of the

Vlasov equation, arises in the way to implement the splitting method, in velocity space. While in cartesian

geometry a subsplitting is needed in the velocity space in order to obtain a symplectic scheme (see [6]), in

cylindrical geometry, we do not split the evolution of the distribution function along v^ and u. In polar

coordinates, the circular motion is described by a simple translation along the azimuthal angle, with

constant velocity (v^ = const.). Therefore, the scheme is intrinsically symplectic, because the quantity v2?
(the energy) is perfectly conserved, without any splitting in the velocity space. Then, we obtain naturally

a symplectic algorithm and, at the same time, significatively simplify the scheme, from the point of view
of the code implementation, with respect to the cartesian case. This could be particularly effective especially

in a phase space of higher dimension, from the point of view of the code execution time.
2.2. Hyperbolic equations of conservation law type

Eqs. (5) and (6) can be written in the general form of conservation law:
of
ot

þr � ðAf Þ ¼ 0. ð7Þ
The previous equation is known as hyperbolic equation of conservation law type. It is well known that,

using a finite difference centered scheme, to evaluate the derivatives in Eq. (7), the algorithm is not stable

numerically [7,8], and the remedy for this problem of stability is to use a noncentered approximation for the

first order derivatives, the direction of these noncentered differences being determined by the sign of A.
In particular, if the information moves in the positive x-direction (i.e., A > 0), we obtain the value of the

function f at the point xi + � as:
f ðxi þ �Þ ’ f ðxiÞ þ �
of
ox

� �
x¼xi

ð8Þ
otherwise (A < 0):
f ðxi þ �Þ ’ f ðxiþ1Þ � ðDx� �Þ of
ox

� �
x¼xiþ1

. ð9Þ
We can refer to the previous formulas as first order upwind Taylor expansions.
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It is easily shown that, using an upwind scheme in solving conservation law hyperbolic equations, as the

Van Leer�s scheme we will describe in the next section [9–13], the algorithm is stable if Dt 6 Dx/|A|, which is

the well-known Courant–Friedrichs–Lewy condition [7]. In the previous expression, Dt and Dx are the time

step and the mesh size, respectively.
3. Integration of the Vlasov equation

3.1. Physical space

The evolution of the distribution function in the physical space is described by Eq. (5). We discretize the

plane (x, t) as xi = (i � 1)Dx (with i = 1,N), tn = nDt, where i and n are integers. The simulation box is given

by [0,Lx], and it is divided in N intervals Ii ” [xi � Dx/2,xi + Dx/2]; so, Dx = Lx/N.
We define the average value of the function f over a generic interval Ii, at the time t, by:
�f ðxiÞ ¼
1

Dx

Z xiþDx
2

xi�Dx
2

f ðx0Þ dx0. ð10Þ
We now integrate Eq. (5) in time over the interval [t, t + Dt], after calculating the average value of (5) over Ii,
using the definition (10):
�f ðxi; t þ DtÞ ¼ �f ðxi; tÞ �
v
Dx

Z tþDt

t
dt0

Z xiþDx
2

xi�Dx
2

o

ox
f ðx0; t0Þ dx0. ð11Þ
Note that, in order to use a simpler notation, in the previous and in the next formulas, we replace fx by f

and vx by v. From Eq. (11), integrating by parts over x, one obtains:
�f ðxi; t þ DtÞ ¼ �f ðxi; tÞ �
v
Dx

Z Dt

0

ds f xi þ
Dx
2
; t þ s

� �
� f xi �

Dx
2
; t þ s

� �� �
; ð12Þ
where t 0 = t + s. We can use a first order Taylor expansion to evaluate the value of f at the boundary points

of the cell Ii, taking into account the propagation direction of the information, according to the sign of v.
For example, for v > 0, we have:
f xi þ
Dx
2
; t þ s

� �
’ f ðxi; tÞ þ

Dx
2

of
ox

� �
x¼xi

þ s
of
ot

� �
t¼s

ð13Þ
and
f xi �
Dx
2
; t þ s

� �
’ f ðxi�1; tÞ þ

Dx
2

of
ox

� �
x¼xi�1

þ s
of
ot

� �
t¼s

. ð14Þ
From Eq. (5), we obtain the value of the time derivative of the function f:
of
ot

¼ �v
of
ox

. ð15Þ
So, we can replace the time derivative of the distribution function by its spatial derivative. Finally, for v > 0,

we obtain:
f xi þ
Dx
2
; t þ s

� �
’ f ðxi; tÞ þ

Dx
2

of
ox

� �
x¼xi

� sv
of
ox

� �
x¼xi

ð16Þ
and
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f xi �
Dx
2
; t þ s

� �
’ f ðxi�1; tÞ þ

Dx
2

of
ox

� �
x¼xi�1

� sv
of
ox

� �
x¼xi�1

. ð17Þ
In the same way, one can treat the case v < 0:
f xi þ
Dx
2
; t þ s

� �
’ f ðxiþ1; tÞ �

Dx
2

of
ox

� �
x¼xiþ1

� sv
of
ox

� �
x¼xiþ1

ð18Þ
and
f xi �
Dx
2
; t þ s

� �
’ f ðxi; tÞ �

Dx
2

of
ox

� �
x¼xi

� sv
of
ox

� �
x¼xi

. ð19Þ
We take the first order Taylor expansion for the function f around the grid point xi and calculate the aver-

age value of f:
�f i ¼ f ðxiÞ þ oðDx2Þ. ð20Þ
Therefore, if one defines rv = sign(v) and a = (1 � rv)/2, it is possible to re-write the upwind Taylor expan-

sions as follows:
f xi þ
Dx
2
; t þ s

� �
’ �f iþa þ rv

Dx
2

o�f
ox

� �
iþa

� sv
o�f
ox

� �
iþa

ð21Þ
and
f xi �
Dx
2
; t þ s

� �
’ �f i�1þa þ rv

Dx
2

o�f
ox

� �
i�1þa

� sv
o�f
ox

� �
i�1þa

. ð22Þ
In the previous formulas it is:
o�f
ox

� �
i

¼
�f iþ1 � �f i�1

2Dx
. ð23Þ
Finally, using the above expansions in Eq. (12), and re-writing in a more compact form the physical space

translation operator Kx, the evolution of f can be written as follows:
�f iðt þ DtÞ ¼
X1

j¼�2

½d0;jþa þ AjðQÞ��f iþjþaðtÞ; ð24Þ
where Q = vDt/Dx and:
A�2 ¼ �Q
4
ðrv � QÞ; ð25Þ

A�1 ¼ Qþ Q
4
ðrv � QÞ; ð26Þ

A0 ¼ �Qþ Q
4
ðrv � QÞ; ð27Þ

A1 ¼ �Q
4
ðrv � QÞ. ð28Þ
Eq. (24) is known as Van Leer�s scheme [9–13] and it is in the form of a conservation law; in fact it is simple

to verify that:
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X1

j¼�2

½d0;jþa þ AjðQÞ� ¼ 1. ð29Þ
The previous scheme is correct at second order in Dt and Dx [6,13].

3.2. Velocity space

In the velocity space, we discretize the domain, using the cylindrical geometry. In Fig. 1, the numerical

velocity grid is shown. Along the azimuthal direction, we divide the domain in Nu intervals Il ” [ul �
Du/2,ul + Du/2], where ul = (l � 1)Du, l = 1,Nu and Du = 2p/Nu. Along the radial direction, we consider

Nk intervals Ik ” [vk � Dv/2,vk + Dv/2], where vk = kDv, k = 0,Nk and Dv = Vmax/Nk. In the previous expres-

sions, we have put v = v^, to use a simpler notation and fv will be replaced by f.

The integration of the Vlasov equation in the velocity space is conceptually similar to the one performed

in the physical space. Basically, the fundamental step is to evaluate the average value of the distribution

function, over the cells which cover the numerical domain. Observing Fig. 1, it is simple to note that for
the generic cell Ck,l the cell area is Sk,l = vkDvDu, on the contrary for the singular cell C0,l the corresponding

area is S0,l = pDv2/4; so, the cell C0,l needs a particular treatment.

Therefore, we can write the average value of the distribution function, in the following form:
�f ðvk;ulÞ ¼
4

pDv2

Z Dv
2

0

v dv
Z 2p

0

duf ðv;uÞ for k ¼ 0; ð30Þ

�f ðvk;ulÞ ¼
1

vkDvDu

Z vkþDv
2

vk�Dv
2

v dv
Z ulþ

Du
2

ul�
Du
2

duf ðv;uÞ for k ¼ 1;Nk. ð31Þ
Using the same method as in the previous section, we obtain the value of the distribution function at the

time step t + Dt, from the value at t.

3.2.1. Integration for the point k = 0

For the singular point k = 0, using Eq. (6), we obtain:
(k,l)

(0,l)

Polar grid

Fig. 1. Cylindrical numerical grid in the velocity space.



F. Valentini et al. / Journal of Computational Physics 210 (2005) 730–751 737
�f ðv0;ul; t þ DtÞ ¼ �f ðv0;ul; tÞ þ
4

pDv2

Z Dt

0

ds
Z Dv

2

0

v dv
Z 2p

0

du B0

of ðv;u; t þ sÞ
ou

�

� 1

v
o

ou
EuðuÞf ðv;u; t þ sÞ
� �

� 1

v
o

ov
vEvðuÞf ðv;u; t þ sÞð Þ

�
. ð32Þ
In the previous formula, it is easily seen that, because of the periodicity in u, we have:
Z 2p

0

duB0

of
ou

¼ 0 ð33Þ
and
 Z 2p

0

du
o

ou
ðEuðuÞf ðv;u; t þ sÞÞ ¼ 0. ð34Þ
Eq. (33) says that the point k = 0 is not subject to the rotation due to the magnetic field effect; physically, in

fact, a particle which is in the point k = 0 has null velocity and it is not subject to the magnetic force.

Using these considerations and integrating by parts over dv, from Eq. (32), we have:
�f ðv0;ul; t þ DtÞ ¼ �f ðv0;ul; tÞ �
2

pDv

Z Dt

0

ds
Z 2p

0

duEvðuÞf
Dv
2
;u; t þ s

� �
. ð35Þ
Now, we discretize the integral over du:
�f ðv0;ul; t þ DtÞ ¼ �f ðv0;ul; tÞ �
2

pDv

Z Dt

0

ds
XNuþ1

l¼1

Z ulþ
Du
2

ul�
Du
2

duEvðuÞf
Dv
2
;u; t þ s

� �
ð36Þ
and get
�f ðv0;ul; t þ DtÞ ¼ �f ðv0;ul; tÞ �
2

pDv

Z Dt

0

ds
XNuþ1

l¼1

Z Du
2

�Du
2

d�Evðul þ �Þf Dv
2
;ul þ �; t þ s

� �
; ð37Þ
where u = ul + �. Using a first order Taylor expansion, we have:
Evðul þ �Þ ’ EvðulÞ þ �
oEv

ou

� �
u¼ul

¼ EvðulÞ þ �EuðulÞ. ð38Þ
Taking the Taylor expansion to calculate f(Dv/2,ul + �, t + s), we need the value of the time derivative of f.
So, using the same approach as in the previous section, we evaluate the time derivative of the distribution

function, by re-writing the Vlasov equation in the velocity space (6) in the following form:
of
ot

¼ B0

of
ou

� E � of
ov

. ð39Þ
In cylindrical geometry, it is:
o

ov
� o

ov
;
1

v
o

ou

� �
ð40Þ
so:
of
ot

¼ B0

of
ou

� EvðuÞ
of
ov

� EuðuÞ
v

of
ou

. ð41Þ
We consider now the discretized description and we introduce the following definition:
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of
ot

� �
k;l

¼ B0 �
EuðulÞ

vk

� �
of
ou

� �
k;l

� EvðulÞ
of
ov

� �
k;l

. ð42Þ
Therefore, by introducing the quantities rl = sign[Ev(ul)] and b = (1 � rl)/2, we can perform the first order

upwind Taylor expansions for the distribution function:
f
Dv
2
;ul þ �; t þ s

� �
’ f ðvb;ul; tÞ þ rl

Dv
2

of
ov

� �
v¼vb;u¼ul

þ �
of
ou

� �
v¼vb;u¼ul

þ s
of
ot

� �
v¼vb;u¼ul

.

From Eq. (37), neglecting the terms containing �2 and �s (to obtain the second order accuracy in space and

time) and taking into account that �f k;l ’ f ðvk;ulÞ (at first order in the mesh size) and:
Z Du
2

�Du
2

� d� ¼ 0; ð43Þ
we obtain the expression for fv(t + Dt), as K0
vfvðtÞ:
�f 0;lðt þ DtÞ ¼ �f 0;lðtÞ �
2DtDu
pDv

XNuþ1

l¼1

EvðulÞ �f b;l þ rl
Dv
2

o�f
ov

� �
b;l

þ Dt
2

o�f
ot

� �
b;l

" #( )
. ð44Þ
Obviously, in the previous formula, we have:
o�f
ov

� �
k;l

¼
�f kþ1;l � �f k�1;l

2Dv
; ð45Þ

o�f
ou

� �
k;l

¼
�f k;lþ1 � �f k;l�1

2Du
. ð46Þ
3.2.2. Integration for the points k = 1,Nk

For the integration of the Vlasov equation, over the grid points k = 1,Nk, we use the same approach,

which has been described in the previous section, but in this case the shape of the generic grid cell Ck,l is
different and the definition (31) must be used to calculate the average value of the distribution function.

The value of the function f at the time instant t + Dt, using Eq. (6), is given by:
�f ðvk;ul; t þ DtÞ ¼ �f ðvk;ul; tÞ þ
1

vkDvDu

Z Dt

0

ds
Z vkþDv

2

vk�Dv
2

v dv
Z ulþ

Du
2

ul�
Du
2

du B0

of ðv;u; t þ sÞ
ou

�

� 1

v
o

ou
EuðuÞf ðv;u; t þ sÞ
� �

� 1

v
o

ov
vEvðuÞf ðv;u; t þ sÞð Þ

�
. ð47Þ
In the previous expression, we have the sum of three integrals, �f ðvk;ul; t þ DtÞ ¼ �f ðvk;ul; tÞ þ I1 þ I2 þ I3;
we consider each term of the sum separately. If we put v = vk + g and integrate by parts over u, the first

term gets:
I1 ¼
B0

vkDvDu

Z Dt

0

ds
Z Dv

2

�Dv
2

ðvk þ gÞ dg f vk þ g;ul þ
Du
2

; t þ s

� �
� f vk þ g;ul �

Du
2

; t þ s

� �� �
. ð48Þ
If we introduce, as usual, the quantities rB = sign(B0) and c = (1 � rB)/2, we can introduce the upwind Tay-

lor expansions:



F. Valentini et al. / Journal of Computational Physics 210 (2005) 730–751 739
f vk þ g;ul þ
Du
2

; tþ s

� �
’ f ðvk;ulþc; tÞ þ g

of
ov

� �
v¼vk ;u¼ulþc

þ rB
Du
2

of
ou

� �
v¼vk ;u¼ulþc

þ s
of
ot

� �
v¼vk ;u¼ulþc
and
f vk þ g;ul �
Du
2

; tþ s

� �
’ f ðvk;ul�1þc; tÞ þ g

of
ov

� �
v¼vk ;u¼ul�1þc

þ rB
Du
2

of
ou

� �
v¼vk ;u¼ul�1þc

þ s
of
ot

� �
v¼vk ;u¼ul�1þc

.

Finally, taking into account that:
Z Dv
2

�Dv
2

g dg ¼ 0 ð49Þ
and neglecting the term in g2 and gs, if one considers that �f k;l ’ f ðvk;ulÞ (at first order in the mesh size), it

is:
I1 ¼
B0Dt
Du

�f k;lþc þ rB
Du
2

o�f
ou

� �
k;lþc

þ Dt
2

o�f
ot

� �
k;lþc

� �f k;l�1þc � rB
Du
2

o�f
ou

� �
k;l�1þc

� Dt
2

o�f
ot

� �
k;l�1þc

" #
.

ð50Þ

The numerical integration performed to evaluate the integrals I2 and I3 is conceptually the same as for the

integral I1, and the results are in the following form:
I2 ¼ � Dt
vkDu

Eu ul þ
Du
2

� �
�f k;lþd1

þ r1

Du
2

o�f
ou

� �
k;lþd1

þ Dt
2

o�f
ot

� �
k;lþd1

" #( )

þ Dt
vkDu

Eu ul �
Du
2

� �
�f k;l�1þd2

þ r2

Du
2

o�f
ou

� �
k;l�1þd2

þ Dt
2

o�f
ot

� �
k;l�1þd2

" #( )
ð51Þ
and
I3 ¼ � Dt
vkDv

vk þ
Dv
2

� �
EvðulÞ �f kþd3;l

þ r3

Dv
2

o�f
ov

� �
kþd3;l

þ Dt
2

o�f
ot

� �
kþd3;l

" #( )

þ Dt
vkDv

vk �
Dv
2

� �
EvðulÞ �f k�1þd3;l þ r3

Dv
2

o�f
ov

� �
k�1þd3;l

þ Dt
2

o�f
ot

� �
k�1þd3;l

" #( )
. ð52Þ
In the previous formulas, we have used the definition (42) and the quantities:
r1 ¼ sign Eu ul þ
Du
2

� �� �
; d1 ¼

1� r1

2
;

r2 ¼ sign Eu ul �
Du
2

� �� �
; d2 ¼

1� r2

2
;

r3 ¼ sign½EvðulÞ�; d3 ¼
1� r3

2
.

Finally, to summarize the numerical advance, the value of the function fv at the time step t + Dt, obtained as

Kvf(t), can be written in the following form:
�f k;lðt þ DtÞ ¼ �f k;lðtÞ þ I1 þ I2 þ I3. ð53Þ
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Note that, in order to calculate the value of the electric field azimuthal component Eu, at the grid points

ul � Du
2
, we have introduced a new cylindrical numerical grid staggered with respect to the previous one,

shown in Fig. 1.
4. Accuracy tests on the cylindrical Vlasov–Poisson code

Using a kinetic code in the study of the wave–particle interaction, the collisionless electric energy dissi-

pation is the most important physical phenomena, in the time dynamics of the system. Therefore, it is fun-

damental to be able to control the effects of fake numerical dissipation, which plays a role in the transition

between continuous and discrete description. In this section, we investigate the properties of the general

Vlasov equation and we discuss the time rate change of several quantities, illustrating their conservation

in time. These considerations will be useful to test the numerical accuracy of the cylindrical Vlasov–Poisson
code and to show that the numerical results are reliable.

4.1. Properties of the Vlasov equation and conservation laws

As it is well known, an ideal Vlasov plasma has got a group of conservation properties, whose mathe-

matical justification can be obtained just by simple considerations on the Vlasov equation. In order to

introduce the most important of them, we now show a list of conservation principles, which we will use

to verify the numerical accuracy of the kinetic code. Let us consider the general form of the Vlasov equa-
tion, which describes the time evolution of the distribution function, for the specie a:
o

ot
þ v � r þ qa

ma
Eþ v� B

c

� �
� rv

� �
faðx; v; tÞ ¼ 0. ð54Þ
It is simple to prove that the time rate change of the total number of particle N is equal to zero, i.e.,
o

ot

Z
fa dx dv ¼ 0 ð55Þ
as a consequence of directly integrating (54) over the entire system. More generally, using the principle of

mathematical induction, one can demonstrate that the Vlasov equation conserves the quantities:
Nn ¼
Z

f n
a dx dv; ð56Þ
where n is an integer. The above set of time invariants provides a very accurate test to control the numerical

dissipation and choose the right number of grid points to use, in order to numerically describe the physical

phenomena under study.

On the other hand, one can perform a more efficient check, paying attention to the time evolution of the

total energy of the system, in which the physical aspects of the system dynamics are contained. From the

Vlasov equation (1), the evolution equations for the moments
n ¼
Z

f dv; nV ¼
Z

vf dv; n� ¼ 1

2

Z
ðv� VÞ2f dv
can be derived. In particular, using the fact that periodic boundary conditions are imposed in the physical
space, the following energy conservation relation in dimensionless units can finally be obtained:
EK þ Eel ¼ Etot ¼ const.; ð57Þ

where EK and Eel are, respectively, the kinetic (direct and internal), and electric energies:
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EK ¼
Z

1

2
nV2 þ n�

� �
dx; Eel ¼

Z
E2

2
dx.
4.2. Numerical results

We discuss now the scaling of the truncation error with the time step and the mesh size, in order to show

that the numerical algorithm is second order accurate in time and space. We present a simple test, in which

we consider the effect of uniform electric and magnetic fields (E0ex and B0ez) on a spatially inhomogeneous

plasma. To test the accuracy of the cylindrical code, we compare the numerical results for the distribution

function f at a generic time step n, with the analytical solution f(an). The initial condition is a maxwellian

function in the velocity space, over which we impose a perturbation in the physical space, with amplitude

A and wave-number k:
f ðx; v;u; 0Þ ¼ e�v2=2ffiffiffiffiffiffi
2p

p ½1þ A cosðkxÞ�. ð58Þ
At each time step, the numerical error, introduced by the discretization of the domain, is given by

� . [Dt3 + Dx3 + Dv3 + Du3], for a second order scheme. At the nth time step, the total error n is of the

order of n�, and is defined as
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNx
i¼1

PNv
k¼1

PNu

l¼1½fi;k;l � f ðanÞ
i;k;l �

2

ðNxNvNuÞ

s
� n�. ð59Þ
Then we study the scaling of the angular coefficient m of the above expression with different values of the

simulation parameters (it is worth to be note that all the parameters have been chosen of the same order of

magnitude and have been scaled by the same factor, in different runs). In Fig. 2, we show the logarithm of m

as a function of the logarithm of Dt. The dashed line in the figure is the best fit of the numerical curve, dis-

played in the figure by dots. The angular coefficient of the dashed line is l . 3.4, and the same behavior
(not shown here) has been obtained for the scaling with Dx, Dv and Du. Therefore, from the above results,

we can conclude that the cylindrical algorithm, used in the numerical integration of the Vlasov equation, is

second order accurate in space and time.

As a first example of application of the cylindrical Vlasov–Poisson code, we discuss the propagation of

electrostatic waves in unmagnetized plasmas. In 1946, Landau, in a seminal paper [14], studied the linear
Fig. 2. The scaling of the numerical error with Dt.
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solution of the unmagnetized Vlasov–Poisson system of equations; he found that the amplitude of electro-

static perturbations, imposed on a field-free equilibrium, exhibits exponential behavior in time, like

E(t) = E0exp[cLt]. The parameter cL is proportional to the velocity derivative of the equilibrium distribution

function, in the vicinity of the wave phase velocity v/, i.e. cL / ðof0=ovÞv¼v/
. In general, for a monotonic

decreasing equilibrium distribution function in the velocity space, the wave is exponentially damped in
time. The Landau damping rate, obtained for a maxwellian equilibrium distribution, under the assumption

of large wavelengths and v/ � vth, is:
Fig. 3

predic
cL ¼ �xpe

ffiffiffi
p
8

r
1

ðkkDÞ3
exp � 1

2ðkkDÞ2
� 3

2

" #
ð60Þ
and x ¼ xpe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k2k2D

q
is the well-known Bohm–Gross relation [15] for the wave oscillation frequency.

The linear regime of the propagation of electrostatic waves is investigated numerically, considering a

case discussed by Filbet et al. [16]. We impose on the system a spatial perturbation of small amplitude

(A = 10�2) and wave number k = 0.5 [the initial condition is given by (58)]. The size of the velocity box

is Vmax = 4.5 and outside the velocity simulation interval the distribution function is put equal to zero.

The evolution of the initial electric perturbation is followed up to tmax = 40. We use a number of cells

Nx = 64, Nv = 64 and Nu = 32. Then, we compare the numerical solution with the analytical result by Lan-
dau. Fig. 3 shows the time evolution of the logarithm of the electric signal; the dashed line represents the

theoretical prediction for the amplitude damping. The analytical value for the damping rate is cL = 0.1533,

in dimensionless units. It is easy to see from the figure, that the numerical solution is in very good agree-

ment with the analytical one.

At this point, in order to complete the accuracy test on the cylindrical algorithm, we control the conser-

vation of the invariants discussed in the previous sections. We consider the initial condition (58), but

increase the number of grid points. Typically, the simulation box is formed by Nx = 128 grid points in

the physical space and Nv = 256 · Nu = 512, in the velocity. The k-number is k = 2p/Lx, where Lx is the
total length of the x-box; so, we consider only one mode, in the simulation box. Typically, the size of

the velocity box is chosen Vmax = 6. In Fig. 4, the time evolution of the invariants N1 and N2 is shown

for three different values of the external magnetic field. In particular, from the top to the bottom in the

figure, we have increasing values of the external field. It is worth to note that the strongly magnetized case

displays a better behavior for the time evolution of the invariant N2, while the conservation of N1 is well

kept independently on the value of B0.

Also the time evolution of the total energy (see Fig. 5) displays the same behavior discussed before: in the

strongly magnetized case, the time evolution of the total energy Etot is more regular than in the case of weak
. Time evolution of the logarithm of the electric signal. Comparison between numerical results (solid line) and analytical

tion (dashed line).
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magnetic fields. In Fig. 6 we compare the evolution of the electric, kinetic and total energy, for the following

set of parameters: A = 0.03, k = 0.405, and B0 = 0.18. The evolution is followed up to t ¼ 800x�1
pe . In this

figure, the fluctuations of the kinetic energy are represented at the top, of the electric energy at the bottom

and finally that of the total energy in the middle. While the fluctuations of the kinetic and electric energy are

of the order of 10�2, the total energy loss is |Etot(800) � Etot(0)| = 3 · 10�4, about two orders of magnitude
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smaller than kinetic and electric energy variations. The energy is then conserved all along the simulations

and the numerical dissipation is always negligible, with respect to the physical fluctuations.
5. Numerical entropy in Vlasov–Poisson codes and filamentation problem

One of the most important property of a Vlasov plasma concerns the generalization of the Boltzmann H

theorem, and in particular the time evolution of the entropy of the system. For a statistical system the

entropy is usually defined as:
S ¼ �
X
a

Z
fa ln fa dx dv. ð61Þ
By direct and simple substitution, from the Vlasov equation (54), we obtain:
dS
dt

¼ �
X
a

Z
dfa
dt

ln fa þ
dfa
dt

dx dv ¼ 0. ð62Þ
Thus, entropy is constant in a Vlasov plasma. This is consistent with the fact that the Vlasov treatment

neglects the process (binary collision) which causes statistical systems to increase their entropy and evolve

toward a Maxwell–Boltzmann distribution. In order to discuss the entropy behavior in a Vlasov model, we

first analyze unmagnetized plasmas, where an initial electric modulation (with a small but not vanishing
initial amplitude) causes the well-known trapping phenomenon [17] and a nonlinear energy exchange be-

tween wave and particles whose velocities are roughly around the wave phase velocity. The particle trap-

ping modifies the shape of the distribution function in the phase space, in the so-called resonant region;

as a consequence, the trajectories of the resonant particles become close and small scale structures appear

in the phase space.

As well known, kinetic simulations start to induce a bias with respect to the Vlasov equation, when the

characteristic length of the phase space structures becomes smaller than the grid resolution [18] (filamenta-

tion instability). The inability of such schemes in reproducing the filamentation over small scales causes a
topology change in the resonant region of the distribution function because of a dissipative numerical
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nonphysical effect, with a consequent entropy increasing, in the nonlinear stage of the system evolution.

The situation becomes better increasing the number of the grid points in the numerical domain, but also

in the best cases the entropy grows of about 0.1–0.3% at the saturation of the instability, with a simulation

box of Nx = 256 · Nv = 1024 points [18].

The magnetized scenario is quite different from the previous. In fact, the introduction of an external
magnetic field modifies consistently the features of the wave–particle interaction [19,20], by a detrapping

effect on the resonant particles, and prevents the formation of small scale structures in the phase space.

Fig. 7 shows the contour plot of the distribution function in the velocity space in two different simulations.

The evolution of the system is investigated up t ¼ 200x�1
pe , in the fully nonlinear regime. At the top, we

show an unmagnetized run; the perturbation of the f level lines, in the region around the wave phase veloc-

ity, is a typical signature of the wave–particle trapping interaction and of the formation of smaller and

smaller scale structures. At the bottom, we describe the evolution of the distribution function, under the

effect of a strong magnetic field. The distortion of the level lines in the resonant region disappears and
the shape of the distribution function is maxwellian. It can easily be seen that the formation of small scale

structures is prevented by the introduction of an external field.

Fig. 8 shows the time evolution of the entropy of the system in the unmagnetized run and in the strongly

magnetized one. In the first case it is clearly visible that after few time steps the entropy starts growing due

to the effect of the trapping phenomenon. On the other hand, the entropy evolution in the second case is
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more regular; we do not observe any increasing in time. The evolution of the entropy exhibits very different

behaviors depending on the value of the external field.

Another well known numerical evidence of the filamentation effect is clearly visible in the time evolution

of the invariants Nn, for n > 1. In particular, when the characteristic size of the phase space structures

becomes smaller than the grid resolution, the conservation of the invariants is not kept, but a decreasing
appears at the same time instant when the entropy displays the increasing behavior shown in Fig. 8. Since

the magnetic field prevents the formation of small structures in the phase space, also the conservation of the

invariants is regularly kept, as it is shown in Fig. 9, where a comparison between the unmagnetized case and

the strongly magnetized one is presented.

From these considerations, we can conclude that the filamentation problem does not affect kinetic sim-

ulations when the magnetic field dominates the dynamics of the system. The wave–particle interaction
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Fig. 9. Time evolution of the invariants N2(t)/N2(0) (at the top) and N3(t)/N3(0) (at the bottom), as a function of time, for B0 = 0.0 and

B0 = 0.2, with A = 0.03.
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shows different features, but the formation of small scale structures is definitively prevented. This allows to

obtain significative numerical results without an extremely refined grid in the velocity space, with respect to

the unmagnetized simulations.
6. A test case: the Bernstein–Landau paradox

In this section, we show some numerical results of the cylindrical Vlasov–Poisson code, about the well-

known Bernstein–Landau paradox, in order to discuss a possible use of the cylindrical algorithm in the

physical contest of the propagation of high frequency electrostatic waves. From the linear Landau theory

[14] of the electrostatic oscillations in unmagnetized plasma, it is well know that the electric oscillations

exhibit exponential damping, caused by the interaction between the wave and particles whose velocity

are close to the wave phase velocity. The essence of the Bernstein–Landau paradox is conceptually quite
simple: when we consider an external magnetic field, the perpendicular electric oscillations are totally

undamped [21], independent of the strength of the background field. It seems that there is a discontinuity

between the magnetized and unmagnetized theory.

The Bernstein–Landau paradox was first treated by Baldwin and Rowlands [22], who showed that, when

the magnetic field approaches zero, the Bernstein modes behave as usual electrostatic waves in an unmag-

netized plasma, because the electron cyclotron frequency decreases with the magnetic field and the cyclo-

tron period becomes smaller than the trapping time of the resonant particles. This causes an overlap of

all harmonics of xB (the electron cyclotron frequency) and the waves are damped according to the usual
Landau damping rate of electrostatic modes, so the Landau�s solution is a superposition of many Bernstein

modes in the limit xB ! 0.

Another analytical and numerical study has been performed by Shukorukov and Stubbe [23], who solved

numerically the dispersion relation of the Bernstein waves, and showed that, in the magnetized case, the

effect of the Landau damping is visible in the first gyroperiod, for very brief time transients, but the waves

are not damped at large times and the amplitude of the oscillations grows with increasing values of the

external field. In this way, they solved the problem in linear approximation, paying attention to the time

evolution of the density perturbation, under the effects of the magnetic field. The nonlinear propagation
has been analyzed numerically by Valentini et al. [19,20].
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We show numerically the linear transition between the magnetized and unmagnetized case, with a brief

comparison with the results by Shukorukov and Stubbe. In our simulations, the time evolution of the elec-

trostatic wave is investigated up to 6–10 cyclotron period, in order to investigate in detail the time transient

in which the discontinuity appears. As initial condition we consider Eq. (58). In Fig. 10, the time evolution

of the electric field is shown in the unmagnetized case, with an initial perturbation amplitude A = 0.01 and

wave number k. 0.405. A typical exponentially damped behavior is clearly visible in the propagation of

the wave, and after a time t. 100, the electric energy is almost totally dissipated, according to the Landau

theory. Fig. 11 shows the effect of an increasing magnetic field on the time oscillations. According to the
Shukorukov and Stubbe theory, the effect of the Landau damping is visible in the first gyroperiod, but each

cyclotron period the magnetic field raises the electric oscillations and recurrence peaks are strongly visible
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in 11(a). As the external field becomes stronger and stronger, the effect of wave damping goes on disappear-

ing, and the amplitude of the oscillations grows, as it simple to see by the comparison between Figs. 11(a)

and (c). Finally, in Fig. 11(d), the strongly magnetized case (B = 0.3) is shown and undamped electrostatic

oscillations are visible. These numerical results are in agreement with the results of Shukorukov and Stubbe

in [23].

In correspondence to the strongest value of the magnetic field (B = 0.3), in Fig. 12, we have reported the

evolution of the electrostatic wave, for three different values of the wave number (k = 0.5,0.4, 0.3). When

decreasing the value of k, the oscillations are less and less damped. Actually, as k decreases, according
to the Landau�s theory [14], the damping rate decreases, since the phase velocity increases and a smaller

number of particles interact resonantly with the wave. For k = 0.3 [panel (c)], the maximum value of the

wave amplitude remains almost equal to the initial wave amplitude.

As it is simple to understand from the results shown in this section, the behavior of the electrostatic oscil-

lations, in magnetized case, is driven by the magnetic field and Landau damping combined effects. The tran-

sition between the unmagnetized and the magnetized theories, in the linear as well as in the nonlinear

regime, arises in the competition between the cyclotron oscillation and the resonant wave–particle

interaction.
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7. Conclusions

We have presented a numerical scheme for the solution of the Vlasov–Poisson system of equations in

magnetized plasmas. The algorithm is based on the coupling of the splitting method in the phase space

in electrostatic approximation and a finite difference upwind scheme, providing the second order accuracy
in space and time. The numerical scheme for the integration of the so-called hyperbolic equations has been

generalized in cylindrical coordinates, in order to simplify the integration of the velocity space Vlasov

equation.

The cylindrical geometry is particularly useful in describing the rotation of the charged particles in the

plane perpendicular to the direction of the external uniform magnetic field. The algorithm, we have used in

solving numerically the rotation in the velocity space, is a generalization of the well-known Van Leer�s
scheme and gives us a simpler way (with respect to a cartesian scheme) to advance the electron distribution

function on the discretized velocity domain. By comparing the cylindrical algorithm with the cartesian
schemes, we have highlighted the main differences between the two different approaches. In particular,

no splitting in the velocity space is needed in polar coordinates, with respect to the cartesian case, in order

to obtain a symplectic scheme, this resulting in a significative simplification of the algorithm, from the point

of view of the code implementation.

Several numerical tests have been described in order to demonstrate that the numerical dissipation does

not affect the numerical results (energy conservation tests) and a more detailed study of the time evolution

of the entropy in a Vlasov model has been performed. Due to the fact that the magnetic effect prevents the

formation of small scale structures in the phase space (peculiar feature of the unmagnetized wave–particle
interaction), the magnetized Vlasov codes are not affected by the filamentation phenomenon, when the

dynamics of the system is dominated by the magnetic field.

We have shown the numerical results of the cylindrical Vlasov–Poisson code in the study of the time evo-

lution of high frequency electrostatic waves in a uniform magnetic field and, in particular, we have dis-

cussed the well-known Bernstein–Landau paradox in linear regime, in order to provide an example of

application of the algorithm. Using our kinetic code, it is obviously possible to investigate the nonlinear

stage of the wave–particle interaction in a magnetized plasma [19,24] and this work represents a significative

step beyond in the study of the kinetic effects on the high frequency plasma oscillations in the presence of an
external magnetic field and in particular in the investigation of the transition between the trapped motion of

the electrons in the electrostatic potential well (unmagnetized nonlinear wave–particle interaction) and a

more complicated particle dynamics, dominated by the coupling of two nonlinear oscillatory motions (trap-

ping motion and cyclotron rotation).
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